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OueHnBaOTCS TUHAMUYIECKAE HArPY3KH Ha MOJABOIHBIE BEPTUKAIBHBIC IIMITMHAPHIECKIE YACTH MOPCKHX IIIaT(GopM
TIPY BO3/ICHCTBUH TOJIHOHEIMHEHHBIX BHYTPEHHHUX BOJIH, TEHEPHUPYEMbIX MHOTOKOMIOHEHTHBIM O0apOTPOIHBIM TPHIIH-
BOM, PACHPOCTPAHSIONIIMMCS BIOJIb BEPTHKAIBHOTO pa3pe3a Ha/l HEPOBHOCTSIMH JIHA B ycI0BUsAX OXOTCKOTO MOps (3a/I1B
AHUBa, IOT0-BOCTOYHAS YaCTh MIETH(POBOH 30HBI ocTpoBa CaxaiawuH). DBOJIOIHS ITOTO MPOIIECCa aHAIU3UPYETCS C T0-
MOIIBI0 YMCIIEHHON MOJENH sl ypaBHEHUH Difyiepa, ONMICHIBAIONINX JBIKCHNE HECKIMAEMOW CTpaTu(UIIPOBAHHON
TI0 TIFIOTHOCTH JKUAKOCTH B BEPTHKAIBHON INTIOCKOCTH. IHTEHCUBHOCTB CHIIBI TaBJICHNUS Ha TIOJBOIHYI0 OOKOBYIO ITOBEPX-
HOCTP OITOPBI MOPCKOW TIIaT(OPMBI U €€ pPaCUeTHBIN M3rHOAroIINii MOMEHT BBIPA)KAIOTCSl B COOTBETCTBHHU C (POPMYIION
MopucoHa s IITHHIPHYECKON cBan AuamMeTpoM 2.5 M U BBICOTON 42 M U pacCYMTaHbl KaK (yHKIMHA BpeMeHH. Bo
BpeMsi [IPUIIMBHOTO [HUKJIA 3TH XapaKTePUCTUKUA MOTYT gocturarh 3HadeHuid 2.3-10° H u 4.8-10° H-M, cOOTBETCTBEHHO.
Ompenenena Taxke 9acTOTa MOSBICHNS OOJIBIINX TUKOBBIX 3HAUYCHUI B MOJIE CKOPOCTH BHYTPEHHUX BOJIH M BEPOSITHOCTH
COOTBETCTBYIOIIMX 3TUM ITUKaM BBICOKHX HAarpy3oK. 3HaYNTEIbHAS HEPABHOMEPHOCTD PACTIPEEIICHNSI CKOPOCTH, a TaK-
e IMHAMHUYECKUX Harpy30K I10 TyONHE SBISETCS] THIMMYHONH 0COOEHHOCTHIO BO3ICHCTBHS BHYTPEHHUX BOJIH.
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Dynamical loads are estimated on underwater vertical cylindrical parts of offshore platforms from the forcing of fully
nonlinear internal wave motions generated by multicomponent barotropic tidal flow over topography along a vertical
section for the conditions of the Sea of Okhotsk (Aniva Bay, near the south-eastern part of the Sakhalin Island shelf).
The evolution of this process is analysed using numerical model of Euler equations for incompressible density-stratified
fluid in a vertical plane. The intensity of pressure on lateral underwater surface and the rate inertia moment are expressed
according to Morison’s formula for a cylindrical pile of 2.5 m diameter and 42 m height and computed as functions of
time. They can reach values of 2.3-10° N and 4.8-10° N'm, respectively, during the tidal cycle. The frequency of the
appearance of large peak values in the internal wave velocity field and the probabilities of the corresponding high loads
are also calculated.
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Internal gravity waves play an important role in the dynamics of water masses and ecosystems: they
have a significant influence on mixing of water layers, suspending and moving sedimentary materials [ 1—2],
significantly determine nutrient distribution and biological productivity [3—5]. Sea water density field
distortions caused by internal waves affect the propagation of acoustic signals over long distances anomalously
amplifying sound losses for particular frequencies [6, 7]. The currents induced by internal waves on continental
shelfs seriously affect the underwater parts of offshore platforms, strengthening tension of anchoring nodes
[8, 9], that call into question the safety of these engineering constructions [10, 11]. The velocities induced by
internal waves can produce significant local concentrated loads, bending and twisting moments [12—17] on
the cantilever beams supporting a drilling rig and oil platforms. There are cases when, under the influence
of internal waves, the oil platforms are displaced 200 m in the horizontal and 10 m in the vertical direction.
Nonlinear internal waves can cause a significant increase (up to twice) in the tension of the anchor chains
[14] used in spar platforms. The intensity of influence of such a wave with a maximum horizontal velocity of
2.1 m/s is comparable with the influence of a surface wave with a length of about 300 m and a height of 18
m [18]. The results of field observations in the South China Sea suggest that intensive internal waves induce
significantly greater loads and torques in offshore platform than surface waves. The danger of such waves is
recognized as critical, so development and adaptation of models which allow estimating a risk of the intense
internal wave’s impact on the offshore platforms is an actual and practically significant task.

When underwater structures are flowed around by a current induced by internal gravity waves, the intensity
of the side surface pressure on offshore platform is usually calculated approximately according to the Morison
equation [9, 19—23]. In the framework of this approach flow pressure contains the inertial (linear, depending
on the acceleration of fluid particles in the wave) and the velocity (non-linear resistance force, quadratic in
velocity) components. This method firstly was suggested in [24] to evaluate the forces associated with surface
waves and influencing on vertical cylindrical objects in water, supports, piles or pillars, supposing that the
cylinder diameter, D, is much smaller than the typical wavelength L so that the wave field almost doesn’t “feel”
the pillar. Let us consider in more details the application of this method to estimate the impact of internal waves
on the offshore platforms.

Mathematical model of internal wave impact on pillars. Following [25], we consider small oscillations
in the vertical plane (x, z) of a cylinder submerged into water (fig. 1).
It is assumed that the distribution of masses inside the cylinder can be generally inhomogeneous. The
equations of motion of the cylinder are:
d’x, d’z, d’o
ar dr’ dr’
where m is mass of the cylinder, J is the moment of inertia with respect to cylinder’s center of gravity, x , z , ¢
are coordinates of the center of gravity and the rotation angle of the cylinder centerline, X, Z are the projections
of the external forces and M is their moment relative to the center of gravity. When we calculate the values of
X, Z, M in (1), associated with the water pressure under the influence of flow around the cylinder, we assume
that the pressure is exerted only by the normal component of the flow, v , w . The intensity f (s) of pressure on
the lateral surface of cylinder is calculated by the well-known Morison formula [19—21] and contains inertial
/, and velocity f, components

=X, m =Z,J

m

=M, (D

fn(S,t) = f] +fD > fl(t) = pgSCMan s Jp(1) =pgRCp |V, | V,, (2
where s is coordinate along the cylinder axis, s = 0 corresponds to the center of mass of the cylinder (fig. 1),
véi=v —vo, v =u(s,t)cosQ+ w(s,t)sinQ, a, = v, , V= ar coscp+£sin(p+sd—q).
oo "oode " dt dt dt

Here v*, is relative normal projection of the velocity at point s on the cylinder centerline, v, and an are
projections of the velocity and acceleration of water, u(s, £) and w(s, ?) calculated at the point x = x_+ s sing,
z=z_+ 5 cos, v is projection of the velocity of the cylinder centerline’s point s, S = R is cross-sectional
area, R is radius of the cylinder, constants C, and C,, are empirical, averaged over the typical period of the
wave drag and inertia coefficients, respectively. They can be defined for a wide range of control parameters:
the Kelegan—Carpenter number K (= U, T/D), the Reynolds number Re (= U, D/v) and the relative roughness
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Fig. 1. A cylinder submerged into water.

Puc. 1. IlorpyxeHHbIil B BOTY HUINHAP.

k/D, where D is the diameter of the circular cylinder, U is maximum flow velocity, T is the typical period of
oscillations in the flow, v is the kinematic viscosity, k is the average size of the irregularities.

The force F, directed by the normal to the cylinder axis and the moment M’ are obtained by integrating
over the length of the underwater part of the cylinder

F,(0= [ £,(s)ds. M'(0)= [ /,(s)sds. G)

where s, < 0 corresponds to the lower end olf the cylinder, and sol> 0 is the point of intersection the cylinder
axis and the sea surface. If the cylinder is assumed to be stiff (the bending angles are small) and is fixed at
the bottom, then s = z, and the integration in (3) can be carried out over the entire water column in case when
the cylinder is longer than the sea depth, and over the entire height of the cylinder when it is completely
submerged.

The force F, and the moment M" can be easily determined if the velocity, normal to the cylinder, and
acceleration components are known. In the case of small oscillations, this is the horizontal velocity component
u and its time derivative — an acceleration @, = ou/0t, which can be easily calculated.

To compute the integrals (3), the normal velocity and acceleration must be known for the whole range of
values of the vertical coordinate z, which is not always possible for experimental data and field observations, or
the resolution can be inadequate. Therefore, preliminary theoretical estimates play here a very important role.
Integration can be done using the Simpson method, with the help of standard utilities.

It should be noted that the representation of the flow pressure force on the cylinder (2) at the point in the
form of a sum of two components £, and f, is valid only approximately. Such a separation is semi-empirical and
requires in each case an experimental proof. It is not uniform in all possible ranges of K, Re and &/D. More
general formulations for forces acting on a solid submerged in a fluid body were presented by Lighthill [26]
in terms of both velocity and vorticity. It was shown that the viscous drag force and the inviscid inertia force
are not independent, and that the appearance and diffusion of vorticity influences on both components of the
force in a nonstationary flow. In this case, even the coefficient of inertia (or the coefficient of the added mass),
C,, is not constant and varies in time, even during the oscillation period of the flow, and also when the control
parameters (Re, K, &/D, shape and orientation of the body) are changing. However, this simplified approach is
useful for the first rough estimates of dynamical loads from wave-induced currents on underwater engineering
structures.

Numerical modelling of internal gravity wave dynamics on the Sakhalin shelf. The main goal of this
work is to study the influence of internal gravity waves on the pillars of offshore platform. The following tasks
are solved for this purpose:

— initialization of the background conditions in the numerical model: temperature, salinity, pressure, water
level fluctuations, bathymetry data were processed (data records were made by Sakhalin Research Institute
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of Fisheries and Oceanography, Russia in the summer in the southern part of the Sakhalin continental slope in
1999—2003 years (the data were kindly provided by Dr. A. G. Chernov through personal communications);

— modeling internal wave dynamics in oceanographic conditions that correspond to the shelf zone of
Sakhalin Island in the Sea of Okhotsk;

— estimation of internal waves’ impact on pillars of offshore platforms on the basis of the predicted
velocity fields induced by internal waves.

Study of internal waves’ dynamics was carried out in the framework of program code intended for
numerical modeling of propagation and transformation of such waves in the ocean, that implements
procedure of numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations
of hydrodynamics inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind
the impact of barotropic tide [27]:

7+ @V -V xk =-vP—kpg . @)
p,+VVp=0, )
VvV =0, (6)
PP
p=—"t—v, (7)
Po

where V (u, v, w) is the velocity vector, V is the three dimensional vector gradient operator, subscript ¢
denotes the time derivative, p, is the density of sea water, p, is the average or characteristic density (introduced
owing to the Boussinesq approximation that assumes that the density p = p(1+ p) only changes insignificantly
in the basin and p is a nondimensional quantity that has a meaning of density anomaly), P is the pressure, g is
acceleration due to gravity, fis, as above, the Coriolis parameter and & is the unit vector along the z-direction.
The waves propagate in the x-direction, y-axis is perpendicular to the wave motion and z is the depth.

The normal to the wave propagation (cross-section) velocity is included in the model, but no variation
along the y-coordinate is allowed. This is realised by neglecting the partial derivatives with respect to y in the
basically three-dimensional equations (4)—(7). The equations are transformed to a terrain-following coordinate
system (so-called sigma-coordinates). The equations are solved over a covered by a rigid lid at the surface.

To initialize the model, it is necessary to prescribe horizontally homogeneous density field of water masses
P,....(?) as well as the velocity distribution in the barotropic tidal field in the computational domain. The steps
of the numerical scheme in space and time are chosen to satisfy the Courant—Friedrich—Levy criterion for
stability.

To determine water depth, we used high resolution bathymetry data between 140 and 150 degrees west
longitude and 40 and 50 degrees north latitude, which were provided by SakhNIIRO. Then we defined a section
between the points 142.65E, 46.5N and 143.05E, 46.05N in the shelf of Sakhalin Island area (Aniva Bay). Its
length is 58 km. The direction of the section is determined in accordance with the pattern of internal gravity
wave refraction from the tidal front, obtained with a linear ray model. Since horizontally-homogeneous density
field is used in our numerical model, the density profile from the outer edge of the section was taken, which
is obtained by approximating and averaging of in-situ data on temperature, salinity and pressure from the
sensors. Detailed description of algorithm of this stage is presented in [28]. Density anomaly field, bathymetry
for chosen section and position of a pile are shown in fig. 2.

An important condition for initialization of the model is the structure of the barotropic tide. The horizontal
velocity ubtr in the barotropic tide is given by:

_H . )
Uy, = I’(X),ZUmaxi SIH(Git + \Vz) IZ I’(X)

Qi = UmaxiH5 (9)

_ |8
Umaxi - HT]Z: (10)

here Q, is the maximum cross flux of water for the corresponding component of the tide, 7(x) = H — h(x) is
the local depth of the fluid, A(x) is bathymetry, H is vertical size of the physical domain, o, is the frequency

sin(Git+\ui), (8)
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Fig. 3. x-t diagram of the total velocity in the projection on the tangent to the bottom line (upper panel)
and the exceedance probability distribution for absolute values of horizontal velocity
(lower panel; gray line — bottom relief).

Puc. 3. [IpocTpaHCTBEHHO-BpEMEHHAs JHarpaMMa IOJHOIM CKOPOCTH B IPOSKIMH Ha KacaTeNIbHYIO K JIMHUHM JTHA
(BBepXy) M pacmpeaeeHne BEPOSTHOCTH IIPEBBILICHUS YPOBHS JUIs a0COTIOTHBIX 3HAYCHUH
TOPHU30HTAIBHBIX CKOPOCTEH (BHU3Y; cepasi THHUA — penbed aHa).
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of the tidal component, v is its initial phase, and the i-index indicates the various tidal components (M2, N2,
etc.). The flow velocities of the components in the barotropic tide are calculated from the data on the tidal
level rise n,. From the continuity equation we obtain the expression for the vertical velocity of the barotropic
tide

dr (z ~-H)
Wy, = ZQ 2( ) sm(cl.t+\ui). (11)
The barotropic tide velocity v, _in the transverse direction with respect to our section is given by:

Vi = Zm(x —=cos(ot +y,). (12)

In accordance with (8)—(12), the initial velocity field is initialized as follows (there are no internal waves
at the initial time):

u=12%;)sin(\ui), v=ZGJ;Q(" cos(y,), w= ZQ dr (- H)sin(\yl.).
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Fig. 4. x-t diagram of the velocity of the barotropic tide (upper panel)
and horizontal baroclinic velocity component (middle panel) for chosen section.

Puc. 4. IIpocTpaHcTBEHHO-BpEMEHHAs AUAarpaMMa CKOpPOCTH 0apOoTpPOITHOTO MpMIINBa (BBEPXY)
Y TOPU30HTAIFHON OapOKIMHHON KOMIIOHEHTHI CKOPOCTH (B CepeIHe) ISl BRIOPaHHOTO pa3pesa.
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Fig. 5. The total velocity at the location of hypothetic pile throughout the vertical depending on time (at the left)
and exceedance probability distribution for absolute values of horizontal velocity
at the location of hypothetic pile over the fluid column (on the right).

Puc. 5. Ilonnas CKOPOCTb B MECTC PACIIOJIOKCHUA TUIIOTETHYECKOU OIIOPHI 11O FHy6I/IHe B 3aBUCHUMOCTHU
OT BpEMCHU (cneBa) " pacnpeacICHUA BEPOATHOCTU MPEBBINICHNS YPOBHA U1 a0COJIFOTHBIX 3HAYEHHUI
FOpI/I30HTaJILHOﬁ CKOPOCTHU B MCCTC PACIIOJIOKCHUA THIOTETUYCCKOU CBaU (cnpaBa).
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Fig. 6. The total force and the moment of force with respect to a bottom
at the location of hypothetic pile depending on time.

Puc. 6. ITonuas cuita ¥ MOMEHT CHJIBI OTHOCHUTEIIBHO JiHa B MCCTC PACIIOJIOKCHUA
TUIIOTETUYCCKOU OIIOPBI B 3aBUCUMOCTU OT BPECMCHHU.

The barotropic tide was initialized as a superposition of the components M2, N2, Q1, O1, P1, K1 [29]. The
Coriolis parameter for the considered sea area is /= 0.0001051 s™".

For engineering applications, it is of great interest to estimate the contribution of internal waves to the
formation of near-bottom currents, so we have analyzed the structure of the tangential to the bottom velocities
for this model case. We defined the projection of the total velocity on the tangent to the bottom and obtained
its time dependence at each point of the cross-section (fig. 3). The distribution of positive and negative values
of the total velocity is essentially asymmetric, especially to the right of the point x = 20 km. This indicates the
nonlinearity of the process. The x-¢ diagrams for the velocities of the near-bottom barotropic tidal flow and the
baroclinic horizontal velocity component of the wave field are shown in fig. 4. The contribution of the wave
component into the total horizontal velocity is rather small for our model case. The maximum values of the
bottom current velocities in the field of internal waves near the right bound are nearly ten times smaller than
the velocities of the barotropic tidal current for the considered situation. But the internal wave component of
the near-bottom velocity has a more complex, irregular spatio-temporal structure. However, structure of the
current in the shallower part of the section is again determined mainly by the barotropic tidal flow.
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Fig. 7. The vertical distribution of the drag force and inertial force (both normalized for the unit length
of the pile) intensity at the time of maximal impact (a); exceedance probability distributions of the inertial
force () and drag force (c) intensity’s absolute values (both normalized for the unit length of the pile).

Puc. 7. BepTukanbHoe pacrnpeiesieHie UHTEHCUBHOCTH CKOPOCTHOM COCTABJISIONICH CHIIBbI BO3JEHCTBUS
1 MTHEPIIMOHHOM KOMITOHEHTHI (00€ HOPMUPOBAHBI HAa TUHHILY JTUHBI OTIOPHI)
B MOMEHT MaKCHMaJIbHOTO BO3/IEHCTBHS BHYTPEHHUX BOJH (@); pacIpeAeIeHNEe BePOATHOCTH MPEBBIIICHUS
YPOBHS 1 aOCOMIOTHBIX 3HAYCHUH MHTEHCHUBHOCTH WHEPIIUOHHON CHIIBI (6)
1 CKOPOCTHOM COCTAaBJISIONIEH BOIHOBOTO BO3ACHCTBHS (6) (006 HOPMUPOBAHBI HA €AWHUILY JJIHHBI CBaH).

To calculate shear forces and torques we determine the field of horizontal velocity (and acceleration) at
the pile location (x = 25 km) over the total of the fluid column depending on time (fig. 5). As one can see, the
velocity field becomes more irregular after some time due to the generation of internal waves.

Total shear force and the bending moment M’ (see eq. (3)) are shown in fig. 6. The characteristic length
of internal waves is of order of hundreds of meters, so that the effect of pile with R = 2.5 m to the wave field
can be ignored (i.e., D/L < 0.15). For the sake of simplicity, we choose the empirical coefficients C, = 1 and
C, = 1 taking into account the considerations presented in [13] and fact, that both coefficients have an order
of 1. The maximal absolute values of the force and the moment are reached at the first tidal cycle while there
are no intensive internal waves and the structure of the current is still approximately barotropic. When internal
waves are generating, the velocity/acceleration may have different signs at different depths. Let us consider
a distribution of the loads upon unit length of the pillar at different times (fig. 7). In Morison equation, the
force acting to a cylinder is a linear sum of a velocity-squared-dependent drag force and an acceleration-
dependent inertial force. The inertial force is mainly smaller in absolute value than the drag force during this
process (fig. 8). Graphs of exceedance probability distribution for both forces’ intensities have visible spatial
irregularity between z = =5 m and z = —10 m. This follows from the peculiarities of the vertical structure
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Fig. 8. The vertical distribution of the ratio of drag force maximal absolute value intensity to inertial
force maximal absolute value intensity (both normalized for the unit length of the pile).

Puc. 8. BeprukanbHoe pacnpeesieHle OTHOLICHUSI MAaKCUMalIbHOTO aOCOJIFOTHOTO 3HAYEHHS
WHTEHCHBHOCTH CKOPOCTHOM COCTABIISIIOIIEH BOJTHOBOTO BO3JCHCTBHS K MAKCHMAJILHOMY a0COIIOTHOMY
3HAUEHMIO0 MHTEHCUBHOCTHU CHJIbI MHEpLUH (00€ HOPMHUPOBAHbI HAa €AMHMILY JJIMHBI CBAN).

of the horizontal velocity (see fig. 5) that show up due to generation of internal waves. At certain moments of
time the inertial force can become comparable to drag force. Significant irregularity of the distribution of the
load throughout the depth is the typical feature of the influence of internal waves.

skskok

The presented research focuses on possible scenarios of generation of internal waves from tidal wave in
the shelf of Sakhalin Island area (Aniva Bay). Despite the relatively small depth spatial inhomogeneity of the
selected section and the absence of generated solitons, the internal waves make their appreciable contribution
to the investigated characteristics. We estimated the shear force and moment acting on a pile in such conditions
on the basis of the calculated wave fields. It is estimated that intensity of lateral surface pressure and the
rate inertia moment for a pile of 2.5 m diameter can reach values of 2.3-10° N and 4.8-10° N-m, respectively.
Influence of internal waves manifests in significant irregularity of the distribution of the load in the vertical
coordinate.

The results were obtained in the framework of the state task programme in the sphere of scientific activity of the
Ministry of Education and Science of the Russian Federation (projects No. 5.4568.2017/6.7 and No. 5.1246.2017/4.6) and
grants of the President of the Russian Federation (NSh-6637.2016.5 and SP-2311.2016.5).
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