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Abstract  

The paper presents results of numerical simulations of freely rising solid spheres in a viscous fluid. The 

diameter of spheres was 5 mm, 7 mm, 10 mm, and 20 mm, and the corresponding Reynolds numbers varies in the 

interval 1400 < Re < 10100. It has been found that the free rise path varies, as the Galileo number increases. The 

paper describes the principal zigzag path generating mechanism, which is determined by regularly generated and 

freed, oppositely oriented vortex structures, which carry away the momentum and mass of fluid from a rising sphere. 

Quantitative characteristics are given with respect to oscillation periods of a sphere path, transverse velocity 

components, and accumulation of fluid mass involved in the attached vorticity. It has been found that the vortex 

detachment period is coincident with the half-period of oscillations. A critical mass of a fluid in the attached 

vorticity has been calculated, and a mechanism of changeover from zigzagging to spiraling has been suggested.  

 

Introduction 

Throughout last decades much attention has been given to the study of the motion of 

bubbles and hard spheres in a fluid in a gravitational field [1 – 6]. The yielded area represents a 

huge field for researches due to variety of modes of motion and the broadest range of change in 

possible characteristic parameters. 

It is also important to note that by now no agreement has been reached among researchers 

on many issues relating to the regularity of the motion of bubble flow in general and, even, the 

freely rising of a single bubble [4, 7, 8]. In order to obtain a complete picture of the bubble rise, 

it is necessary to take into account the nonlinear interaction of many factors, such as the physical 

properties of the liquid and gas filling the bubble, surface tension, inertia of the surrounding 

fluid, medium resistance and buoyancy. All this, as well as the three-dimensional nature of the 

rise, make this problem practically inaccessible for both detailed experimental study and 

construction of theoretical models accounting all these aspects [4, 7, 8]. 

As for rising/falling solid spheres of a fixed shape, the picture is clearer as compared to 

the case of moving bubbles, because the shape of a sphere has no effect on the dynamics of its 

motion. Nevertheless, in spite of the simplifications there are also some disagreements among 

the authors of works on this subject concerning the conditions and the occurrence time of 

vibrations as well as the existing types of motion [5, 9 – 12]. 



2 

 

Due to sharp growth of computing power and development of numerical methods, direct 

numerical modeling has become the most common research tool in recent years, while the 

difficulties of creating ideal conditions and performing accurate measurements in field 

experiments have not yet been overcome. Direct numerical simulation of the free rise of a single 

bubble / sphere is carried out on the basis of the solution of the Navier-Stokes equations system 

for a two-phase medium in 3D formulation using the surface tension model [3 – 5, 7, 8]. 

Numerical studies provide detailed information on the various characteristics of this process. 

Paper [7] gives numerical simulation results describing the dynamics of a single air 

bubble rising freely in water. The behavior of rising bubbles of different diameters, from 1 mm 

to 10 mm, was investigated. All rising bubbles demonstrated a zigzag, or a spiral path. It has 

been proposed that such path of motion is related to a varying shape of a bubble and a formation 

of a typical unsteady vortex wake behind the bubble, which looks like two oppositely oriented 

vortex trunks detached, one after another, from various sides of the bubble. It is shown that the 

main cause of zigzagging (which is, most likely, not the single one) is that vortexes are detached 

in turn from the bubble surface. The mechanism of changeover from a zigzag to a spiral path is 

less clear and, probably, is caused by a varying bubble shape. The numerical simulation of the 

free rise of single solid spheres could help us to achieve a better understanding of these 

phenomena, because, as mentioned above, in this case the effect of a varying shape is excluded. 

The study of a single solid sphere rise, initiated by the question concerning the mechanism 

of the appearance of the spiral trajectory of a deformable bubble, is of particular interest. A 

number of papers [9 – 18] are known, connected with the study of the motion of single hard 

spheres in liquids possessing different properties. In contrast to air bubbles at the interphase 

boundary, in this case the sticking condition is realized, but not the condition of equality of the 

shear stresses to zero. The main influence on the nature of the rise of a solid sphere is caused by 

such factors as buoyancy, the moment of inertia of a particle in a fluid, viscosity and 

“hereditary” forces. 

The rise of hard spheres is characterizing by two dimensionless numbers: the Galilei 

number  /|1| 3* gDmGa  (0 is density of a sphere,  is density of a fluid,  is kinematic 

viscosity, D is diameter of a sphere, g is gravitational acceleration), acting as dimensionless 

inverse viscosity (the ratio between gravity and friction), and the ratio of densities of a fluid and 

a solid body, m
*
 = 0/. 

In [9], based on a large number of experiments with hard spheres with different ratios (m
*
, 

Ga), an attempt was made to generalize the results obtained from different papers, and the 

regimes of motion of spherical bodies and the type of vortex trail left behind the body were 
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determined. One of the results of this paper is a compiled map of the modes of motion of hard 

spheres, obtained for a large range of numbers (m
*
, Ga), and samples of the corresponding 

characteristic traces. It follows from this that for hard spheres there can be either a rectilinear or 

inclined or zigzag motion. In this case, the spheres can additionally perform either periodic or 

“chaotic” small vibrations, and can float without oscillations. 

In paper [4], the emergence of spheres that perform “chaotic” vibrations is allocated to a 

separate regime. It should be noted that, despite the fact that the “spiral” trajectory is sometimes 

mentioned in studies on the motion of hard spheres [12, 14], recent papers on this topic [4, 9] 

state that oscillations interpreted as spiral are small by amplitude and wavelength relative to 

those that occur in one plane and represent a zigzag motion. 

On the mode map of motion in [9], there are little investigated areas with insufficient data. 

In most papers [5, 11, 17, 18], the rise of hard spheres is investigated in a certain limited range of 

characteristic numbers m
*
 and Ga. For example, in the diagram there are few points 

corresponding to small Reynolds numbers Re (Re < 1000) and relatively small values of m
*
 (m

* 

 0.1  0.3). The most frequently investigated regimes correspond to the characteristic numbers 

1000 < Re < 10000 [12, 14], or to small Reynolds numbers, but at m
*
 > 0.5, or m

*
 < 0.05 [16, 

17]. 

The present work has been performed to study the free rise in the field of gravity of single 

solid spheres having different diameters with the same characteristic mass number m
*
 = 0.2. The 

study is based on solving the full system of Navier–Stokes equations using a fully implicit 

scheme [19]. The free rise paths of spheres 5 mm, 7 mm, 10 mm and 20 mm in diameter have 

been examined and the regularity of how a vortex wake past a rising sphere affects its motion 

path has been found out. The obtained data are compared with the mode map of motion from [9]. 

It should be noted that some of the results correspond to the least explored area of the diagram. 

In paper [10] the rise of hard spheres (m
*
 = 0.5) with small characteristic numbers Re (Ga, 

respectively) were carried out. The trend in changing the character of the rise of spheres with 

increasing Re number was described. At first the spheres float straight, then along an inclined 

rectilinear trajectory, and then in zigzag fashion. A similar change in the character of the 

emergence of spheres as the characteristic number Ga was increased was also observed in [20]. 

The results of this paper confirm this trend of changing the trajectory of motion as the number 

Re increases. 

The notion of an “entrained vorticity” is used when considering a detached vortex flow 

(see, for example, [21]). This is a vortex wake past a sphere having the shape of a vortex ring, 

which elongates downstream with time being attached and at some time it is detached. The 

notion of an “attached mass” implies a fluid mass involved in the entrained vorticity. 



4 

 

The present work justifies a hypothesis of how the fluid mass attached to a sphere affects 

its free rise path and causes unstable motion. The behavior of the velocity field around a rising 

sphere is studied. A critical value of attached mass at the time, when vortexes start detaching, 

and at the time, when a particle begins its periodic motion is determined. Comparison between 

the types of motion of a solid sphere and an air bubble [7] allows making conclusions concerning 

the mechanism of generating a spiral trajectory of rising bubbles. 

 

1. A physico-mathematical model and a numerical scheme 

 

The motion of a solid sphere is stipulated by buoyancy and resistance forces, which 

interaction can be represented by accounting viscosity, inertia of fluid and gravity.  

The direct numerical simulation is used in the present work to numerically simulate the 

free rise of spherical particles, which is based on solving the Navier–Stokes equation system: 
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Here  is laminar viscosity. 

The rigid body model is used to describe the motion of a solid sphere in a liquid: 
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where m is mass of rigid body, iF


 is force applying to the body, V


 is translation velocity, iM


 is 

moment applying to the body, 


 is angular velocity, T is tensor of inertia moment. 

This model allows for calculations with objects moving under the action of both external 

forces and forces determined by the liquid-body system itself. In particular, the movement of the 

body under the action of hydro-aerodynamic forces and the moments created by them is taken 

into account. The action of the force of gravity is given directly, starting from the characteristics 

of the solid particle: its density and volume 

VgF


0gr  . 

Hydrodynamic forces, including the Archimedes’ force, are calculated each time step using 

the value of fluid pressure acting on a given particle ( pF


) and the friction ( F


) force 
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Here n


 is external normal to the verge,  is dynamical viscosity of a fluid, u is tangential 

velocity component, V is volume of the integration cell, S is area of the verge. 

The sampling of the system (1) is performed with the method of finite volumes using an 

arbitrarily-shaped unstructured grid; the system is solved using the fully implicit scheme [19] 

based on the well-known SIMPLE algorithm [22].  

To simulate a moving spherical particle, we use the approach based on the application of 

multiple-domain grids with overlaps (the so called “Chimera” grids) [23]. The main design area 

is a “basic” grid, along which a separate calculation grid, surrounding the solid, moves. At each 

calculation step, the resulting geometric models are combined into one grid representing the 

original problem (Figure 1). 

Integrating of equations (2) yields new coordinates of the center of gravity of the sphere 

and a new angle of rotation. On the basis of the obtained data, the displacement of the nodes 

lying on the surface of the sphere is calculated. Together with the displacement of the nodes 

belonging to the surface of a solid, the whole grid region is shifted to the given boundary. 

 

 

Figure 1. A computational domain with the singled out zone for a moving object 

 

The interaction of the “base” and additional grids is realized using an interpolation 

template, designed for the correct interaction of topologically unconnected regions. One of the 

advantages of this approach is the possibility of using large enough calculation areas. The grid 

resolution can be coarse in regions located away from the solid, while in its vicinity a 

computational grid with a detailed resolution is constructed. 

The described physical-mathematical model is implemented in the software package 

LOGOS – the software product of engineering analysis, designed to solve the conjugate three-

dimensional problems of convective heat and mass transfer, aerodynamics and hydrodynamics 

on parallel computers [24 – 26]. Using of the multi-grid method [24] in the calculations enables 
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to accelerate the computational procedure significantly and to improve the efficiency of 

hundreds of computing cores using. The LOGOS software package has successfully passed the 

verification and has shown quite good results on a series of various problems including turbulent 

flows [26 – 28], propagation of gravitational waves on a free surface (tsunami) [19, 29, 30], 

industrial problems [31, 32]. All the calculations presented in this paper were carried out using 

the LOGOS software package.  

 

2. Results of numerical tests 

Pure water having standard properties is taken for a fluid. Spheres with m
* 

= 0.2 and 

diameters D = 5, 7, 10 and 20 mm are considered. Typical numbers for such spheres are given in 

Table 1.  

Table 1. 

Typical numbers 

D, mm 5 7 10 20 

Ga 1000 1640 2800 8000 

Re    1400 2100 3400 10100 

 

It should be noted that the relation between Re and Ga numbers taken to calculate values 

for this table is 
dC

Ga
1

3

4
Re   (Cd is the drag coefficient), which in turn follows from an 

assumption that F = gV(  0) (see [9]). In our numerical tests Re numbers are calculated from 

the actually obtained velocity values and given below. 

The calculated area is a grid with overlaps consisting of two overlapping regions: 1) a 

basic grid that fills the entire design area, which is a parallelepiped with dimensions 20D  20D 

 100D; 2) the grid surrounding the sphere and the filling area with the dimensions 2D  2D  

2D, which moves along with the sphere along the basic grid. The total grid size is about 14.5 

million cells. Both grids consist of hexahedrons. The characteristic cell size of the basic grid is 

1.5 mm. As a result of a series of calculations on grid convergence, an optimal grid resolution 

was established in the vicinity of the rising sphere. The typical size of a grid cell tied to a sphere 

is 0.25 mm. A fragment of the grid is shown in Figure 1. 

Initially, a fluid and a sphere are at rest. The boundary condition “an impenetrable wall” is 

set for a rising sphere. At initial time, this sphere is at a distance about one diameter to the lower 
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wall of the computational domain. To provide sustained computations, a time step corresponding 

to Courant number 0.5 is sufficient. 

All results are presented in dimensionless quantities. The effective acceleration |m
*
  1|g 

and diameter D of a sphere are used to provide zero dimension.  Then, coefficients for velocity 

and time are gDmu |1| **   and 
gm

D
t

|1| *

*


 , respectively. The attached mass is 

normalized with respect to the mass of fluid forced out by the sphere, m0.  

Examination of a free rise trajectory 

One of the integral quantitative characteristics of the solid sphere motion is a mean 

velocity of rising, which allows indirectly assessing the motion pattern. Figure 2 illustrates the 

time dependence of the mean velocity of rising in dimensionless quantities for spheres.  

It is clearly seen from this figure that spheres of diameters 10 mm and 20 mm demonstrate 

that a short transient period is followed by the regime of stable oscillations and this is an 

evidence of periodic motion of particles. Spheres of 7 mm in diameter demonstrate weak 

oscillations of the free rise trajectory, which later degenerate into a straight line and this is, most 

likely, an evidence of the transient regime of rising, which is close to rectilinear motion. Spheres 

of 5 mm in diameter demonstrate no oscillations either because oscillations of the rising 

trajectory are insignificant, or a sphere rises rectilinearly.  

0,0

0,4

0,8

1,2

1,6

2,0

0 10 20 30 40

t/t
*

V/V
* 5мм

7мм

10мм

20мм

 

Figure 2. The free rise velocity of spheres with different diameters. 

 

Mean values of the free rise velocity obtained in simulations correspond to Re numbers 

625, 1400, 3000, and 10000. For 10 mm and 20 mm spheres, the results obtained are in a good 

agreement with the Re numbers from Table 1. For spheres of 5 mm and 7 mm in diameter, the 
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calculated velocity of rising significantly differs from the expected one and does not correspond 

to the map of motion regimes [9].  

Figures 3-6 illustrate trajectories of spheres moving in vertical and horizontal planes. 

 

                                  a)                                                                             b) 

Figure 3. A trajectory of moving 5 mm spheres:  

a – in vertical planes  (x-z) and (y-z); b – in horizontal plane (x-y). 

 

 
Figure 4. A trajectory of moving 7 mm spheres:  

a – in vertical planes  (x-z) and (y-z); b – in horizontal plane (x-y). 

 

 
                                  a)                                                                             b) 

Figure 5. A trajectory of moving 10 mm spheres:  

a – in vertical planes  (x-z) and (y-z); b – in horizontal plane (x-y). 
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                                  a)                                                                             b) 

Figure 6. A trajectory of moving 20 mm spheres:  

a – in vertical planes (x-z) and (y-z); b – in horizontal plane (x-y) 

 

It can be seen from these figures that 10 mm and 20 mm spheres demonstrate the periodic 

motion relative to both X axis and Y axis. In horizontal plane, spheres demonstrate the periodic 

motion, which is defined as zigzagging. It is clear from Figure 5 for 10 mm spheres that initially 

the zigzag motion plane is at an angle of 45 degrees to vertical coordinate planes and later it 

changes its position. A 20 mm sphere, upon a short stabilization period, moves in zigzags in one 

vertical plane. 

A 7 mm sphere initially demonstrates small oscillations, then they degenerate and the free 

rise process continues as a rectilinear motion. Data on the trajectory of spheres 5 mm in diameter 

(see Figure 3) are given for the time 1s. Note that for this time horizontal displacements of such a 

sphere are 0.5D. Such motion regime should be considered rectilinear. 

The conclusions concerning the behavior of moving spheres are confirmed by qualitative 

pictures of velocity fields in Figure 7 (vertical cuts across the center of sphere). 

One can see from this figure that a vortex wake is generated behind 10 mm and 20 mm 

spheres, which leaves a vortex street consisting of vortexes detached one after another from 

various sides of a sphere. Such velocity field is an explanation to the unsteady behavior of a 

particle and its zigzag trajectory. For spheres of 20 mm in diameter, vortexes are more 

pronounced and have a higher intensity. For 5 mm and 7 mm spheres a vortex wake is 

symmetrical, without visible detached vortexes and this is an evidence of rectilinear motion. 

Detachment of asymmetric vortexes leads to generation of the lifting force’s transversal 

component. If a vortex is detached, the space it occupied behind the body is filled out with a 

fluid moving slower, the velocity decreases and the pressure increases and, hence, the side force 

increases. Plots of transversal velocity components for spheres of 10 mm and 20 mm in diameter 

given in Figure 8 illustrate these statements.  

It is seen from this figure that the velocity of motion in the both transversal directions 

varies due to the detachment of vortexes from the body surface. Velocity fluctuations have the 
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same frequency and, moreover, they are synchronous and this fact also confirms that the zigzag 

trajectory plane is at an angle of 45 degrees to vertical coordinate planes. 

 

 

                  a)                                b)                                    c)                                            d) 

Figure 7. Typical velocity fields for spheres of different diameters:  

a – 5 mm; b – 7mm; c – 10 mm; d – 20 mm 

 

 

                                  a)                                                                             b) 

Figure 8. Plots of transversal velocity components versus time:   

a – d = 10 mm; b – d = 20 mm 

 

Zigzagging is associated with regularly generating and freeing oppositely oriented vortex 

structures. Figure 9 represents typical vortex wakes for the described simulation of the motion of 

spheres having different diameters. They consist of double pairs of vortex trunks, which are 

attached to a sphere in an antisymmetric position.  

It is seen that a vertically moving 5 mm sphere leaves a symmetric vortex wake without 

variations in the orientation of vortexes. The vortex wake past a 7 mm sphere is a chain of 
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vortexes with a single-side orientation owing to which a lateral lifting forсe is generated that 

promotes the inclined rise.  

 

                                  a)                      b)                           c)                               d) 

Figure 9. Typical vortex wakes past moving spheres:  

a – d = 5 mm; b – d = 7 mm; c – d = 10 mm; d – d = 20 mm 

  

A vortex wake past spheres of 10 mm and 20 mm in diameter includes a sequence of 

vortex rings generated within each motion cycle of a body. With transition from one ring to 

another the orientation of vortexes varies. This result agrees with observations described in paper 

[4, 9, 13]. It [4, 9] states that vortex wakes behind zigzagging spherical particles includes four 

vortex rings.  

 

Studying the attached mass effect 

In this work we studied how the process of generating an attached mass affected the 

dynamics of vortex detachment in case of the zigzag motion. 

Figure 10 graphically represents curves of the normalized attached mass versus time for 

spheres of diameters 10 mm and 20 mm. 
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These plots are periodical: at some time an accumulated attached mass achieves its critical 

value and this leads to its detachment from the body surface. Note that the largest mass is 

accumulated for the first period (when vortexes are detached for the first time). For the spheres 

mentioned above, a critical mass is 100 times larger than a sphere in both cases. 

 

 

                                  a)                                                                             b) 

Figure 10. The curves of attached mass versus time for spheres of different diameters: 

а – d = 10 mm; b – d = 20 mm. 

 

The attached mass accumulation time is consistent with the vortex detachment time. 

Simulation data on trajectories of rising spheres (Figure 5 and 6) and curves of transversal 

velocity components (Figure 8) allow calculating oscillation periods for bodies and fluctuation 

periods for transversal velocity components, respectively. Thus, we can obtain oscillation 

periods from the plots of motion paths by measuring the wave motion length and dividing it by 

the mean free-rise velocity. It appears that the oscillation periods calculated according to the 

plots of transversal velocity components and motion paths are the same and equal to 16.8 s and 

9.2 s for spheres with d = 10 mm and d = 20 mm, respectively. Besides, a half-period of 

oscillations coincides with the attached mass accumulation period. According to this data, we 

can assume that for one zigzag motion period vortexes are detached two times (or the attached 

mass comes off two times).  

 

Conclusion 

In this paper we describe the numerical study of the free rise of different-diameter solid 

spheres with m
*
 = 0.2. It has been found that the behavior of a rising sphere varies, as its 

diameter (or Re number) increases. A 5 mm sphere rises rectilinearly, the trajectory of a 7 mm 

sphere is an inclined straight line, spheres of 10 mm and 20 mm in diameter demonstrate the 

zigzag motion. Papers [10, 20] have already described observations of such a trend in the 

changeover of rising trajectory depending on an increasing Galileo number (and, hence, Re 
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number). The obtained data, similarly to that in [9], numerically proves the existence of 

rectilinear vertical motion, which was called into question in papers [10, 17]. 

The current study indicates that the parameters with which the rectilinear motion changes 

over to zigzagging need to be specified. Thus, the free rise of 10 mm and 20 mm spheres is 

consistent with the map of motion regimes for solid spheres in [9], while this is not true for 5 

mm and 7 mm spheres. According to the diagram in [9], such spheres should move in zigzags, 

however, simulations demonstrate the rectilinear motion.  

It follows from papers [9 – 12, 16 – 18] that the (m
*
, Re) domain in the map of motion 

regimes, which 5 mm and 7 mm spheres fall into, is less studied. There is an insufficient 

numerical and experimental data for it. The critical value of mass number m
*
 in this domain is 

~0.36 (within the range of large Re numbers Re > 1550 it approximately equals 0.6) and this 

indicates that, possibly, trajectories in the vicinity of critical m
* 

value are non-uniform. The 

current study suggests a hypothesis concerning the dependence of critical number m
* 

on 

Reynolds number in this domain. To confirm it, additional experimental and numerical tests are 

required.  

Besides (see, for examples, [4, 5, 9]), to observe properly the motion in the vicinity of 

critical m
*
 values, very long stabilization time is required to avoid the effect of disturbances of 

various kinds..  

Note that for these spheres (d = 5 mm and d = 7 mm) we have inconsistent Re numbers 

obtained from calculations using the mean velocity of rising and 
dC

Ga
1

3

4
Re   formula. 

Possibly, the cause of such inconsistency is that the formula has been derived with an 

assumption of no other force acting on the given body, except the gravity and buoyant forces. In 

reality, the action of hydrodynamic forces on the side of fluid is a more complex process.  

The present paper also shows that each of the observed free rise types demonstrates its own 

vortex wake. The principal mechanism of generating a zigzag trajectory is described, it is 

determined by regularly generated and freed vortex structures of opposite orientation, which 

carry away a part of the attached mass.  

For zigzagging spheres, quantitative characteristics are given with respect the oscillation 

periods of moving sphere trajectories, transversal velocity components, and accumulation of 

attached masses. It has been found that the mass detachment period coincides with the half-

period of oscillations of trajectories and this fact confirms the detached mass effect on the 

motion of particles. A critical attached mass is found to be 100 times larger than a particle mass.  

Comparison of possible trajectories of rising spheres obtained in the present work and 

given in [9] with the results of simulations for rising air bubbles of the same diameters presented 
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in [7, 8] gives additional data on a possible mechanism of generating a spiral trajectory in case of 

bubbles.  Since the spiral motion is not observed for solid spheres, there are grounds to suggest 

that the difference in the behavior of gas bubbles and solid spheres can be explained by the fact 

that bubble shapes can easily transform [4, 17]. The suggestion that the bubble shape 

transformation affects the changeover from zigzagging to spiraling is indirectly confirmed and a 

subject of further investigations. However, in spite of the difference in vortex generation 

mechanisms for solid spheres and bubbles the induced resistance effect on the real resistance is 

the same [15, 18]. 
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