Khimchenko & Serebryany, 2017 |
Khimchenko, E.E. & Serebryany, A.N., 2017. Some features of internal waves on Abkhazian shelf of the Black Sea. Proceedings of the First International Conference on Ocean Thermohydromechanics-2017, pp.180-183. |
На карте |
Casagrande et al., 2009 |
Casagrande, G., Warn Varnas, A., Stéphan, Y., & Folégot, T., 2009. Genesis of the coupling of internal wave modes in the Strait of Messina. Journal of Marine Systems, 78, pp.S191–S204. |
На карте |
Van Haren & Gostiaux, 2016 |
Van Haren, H. & Gostiaux, L., 2016. Convective mixing by internal waves in the Puerto Rico Trench. Journal of Marine Research, 74(3), pp.161–173 |
На карте |
Izhitskiy et al., 2014 |
Izhitskiy, A. S., Khymchenko, E. E., Zavialov, P. O., & Serebryany, A. N. 2014. Hydrophysical state of the Large Aral Sea in the autumn of 2013: Thermal structure, currents, and internal waves. Oceanology, 54(4), pp.414-425. |
На карте |
Serebryany & Khimchenko, 2018 |
Serebryany, A.N. & Khimchenko, E.E., 2018. Strong Variability of Sound Velocity in the Black Sea Shelf Zone Caused by Inertial Internal Waves. Acoustical Physics, 64(5), pp.580–589. |
На карте |
Morozov et al., 2019 |
Morozov, E.G., Frey, D.I., Gladyshev, S.V., Klyuvitkin, А.А., Novigatsky, А.N., 2019. Physics of the atmosphere and the ocean 2019: Internal tides in the strait of Denmark. Oceanology, 55(3), pp.78-84. |
На карте |
Chanona et al., 2018 |
Chanona, M., Waterman, S. & Gratton, Y., 2018. Variability of Internal Wave‐Driven Mixing and Stratification in Canadian Arctic Shelf and Shelf‐Slope Waters. Journal of Geophysical Research: Oceans, 123(12), pp.9178–9195. |
На карте |
Ibáñez-Tejero et al., 2018 |
Ibáñez-Tejero, L., Ladah, L. B., Sánchez-Velasco, L., Barton, E. D., & Filonov, A., 2018. Vertical distribution of zooplankton biomass during internal tidal forcing under mesoscale conditions of upwelling and relaxation. Continental Shelf Research, 171, pp.1–11. |
На карте |
Maksimova, 2018 |
Maksimova, E.V., 2018. A conceptual view on inertial internal waves in relation to the subinertial flow on the central west Florida shelf. Scientific Reports, 8(1). |
На карте |
Xie & Li, 2019 |
Xie, X. & Li, M., 2019. Generation of Internal Lee Waves by Lateral Circulation in a Coastal Plain Estuary. Journal of Physical Oceanography, 49(7), pp.1687–1697. |
На карте |
Serebryany & Khimchenko, 2019 |
Serebryany, A.N. & Khimchenko, E.E., 2019. Internal waves of mode 2 in the Black Sea. Proceedings of the Academy of Sciences, 488(5), pp.555–559. |
На карте |
Johannessen et al., 2019 |
Johannessen, O.M., Sandven, S., Chunchuzov, I.P., Shuchman,R.A., 2019. Observations of internal waves generated by an anticyclonic eddy: a case study in the ice edge region of the Greenland Sea. Tellus A: Dynamic Meteorology and Oceanography, 71(1), pp.1–12. |
На карте |
Aslam et al., 2018 |
Aslam, T., Hall, R.A. & Dye, S.R., 2018. Internal tides in a dendritic submarine canyon. Progress in Oceanography, 169, pp.20–32. |
На карте |
Liang et al., 2019 |
Liang, J., Li, X.-M., Sha, J., Jia, T., & Ren, Y., 2019. The Lifecycle of Nonlinear Internal Waves in the Northwestern South China Sea. Journal of Physical Oceanography, 49(8), pp.2133–2145. |
На карте |
Reid et al., 2019 |
Reid, E. C., DeCarlo, T. M., Cohen, A. L., Wong, G. T. F., Lentz, S. J., Safaie, A., Hall, A. & Davis, K. A., 2019. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnology and Oceanography, 64(5), pp.1949–1965. |
На карте |